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ABSTRACT 

Dolph-Chebyshev weights, which realize a minimum sidelobe level 
for a specified mainlobe width, can be generated by means of a single 
Fast Fourier rransform (FFT).    For an even number of elements, 2H, 
the size of the FFT is H.    Programs for single precision and double 
precision procedures are furnished.    The utility of this technique 
for spectral analysis via large-size FFTs is indicated. 

ADMINISTRATIVE INFORMATION 

This memorandum was prepared under Project No. A75205, Sub-Project 
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INTRODUCTION 

The ability to realize small sidelobes for a weighted equi-spaced 
line array and specified mainlobe width has been available since 
Dolph (Ref. 1) solved this problem in 194.6. Then in 1953,. Stegen 
(Ref. 2) presented a practical method of obtaining the actual weights 
to be used for the array. Here we will show that the calculation 
of all the weights can be accomplished by a single Fast Fourier 
Transform (FFT). The speed and accuracy of the FFT can thus be used 
to reduce this once tedious calculation to a very quick and accurate 
calculation with minimum storage requirements. This is particularly 
useful for large numbers of elements, such as are encountered in 
spectral analysis, where the sidelobe problem (equivalent 
to the array problem) is that of spurious response to frequencies 
removed from those of interest. 
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THEORETICAL BACKGROUND 

In this section, we shall, for completeness, present the theoretical 
basis of Dolph's solution and the method   Stegen used to calculate 
the weights. Then we shall show how the weight calculation can be 
realized by means of a single FFT. 

Desireable Pattern 

The mathematical problem can be envisioned as selection of the 
weights fwij} in the finite impulse train in figure 1, such that 

W, 
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FIGURE 1. Impulse Train for 2H Elements 

weight function w(t) has small sidelobes in its spectral window "Wfr), 
where 

\f{f) « P di wW exf (-iZirft) 
(l) 

is the Fourier transforn: cf w(t). The total number cf eler.ents 
(impulses) in figiare 1 is even, equal to 2H; however, the extension 
to an odd number cf elements is similar to the technique presented in 
the following. The weights {w^ are assumed to be real and symetrio 
about the center, t = C.  The time separations between impulse locations 
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are all equal to A . Although the problem has been couched in the 
time domain, the abscissa in figure 1 could equally well be interpreted 
as distance for the array problem, or as a different variable for other 
applications. 

The weight function w(t) can be expressed as 

Substitution of (2) into (1) yields 

(2) 

2 
(3) 

where we have used the symmetry of the weight structure about the 
center.    The problem now is to choose weights   {w^,      such that "Wfr) 
in (3) has as low sidelobes as possible for a specified main lobe 
width.    Vfe notice first from (3) that 

^(Hh-vtf) fr^w. U) 
Thus only the sidelobes in the region (0, J-    ) need be controlled, 

Let us define the function 
H 

frW ^ zXv^-OÜ]; 
then 

(5) 

vtf) - H^- (6) 
The function G satisfies the rules 
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G(-u) = G(u), G(u +Tr) = -G(u), G(TT-u) = -G(u). (7) 

Thus, knowledge of G(u) in the interval (0, 'K/2)  completely character- 
izes G(u) for all u; this is consistent with U) and (6). 

As a special case, 

G(u) = 
yin(2Hu) 

2 sw(u) 
if u = 1 for k - 1, 2, ..., H. (8) 

The first null of this function is at u =TT/(2H); this flat weighting 
serves as a comparison case. 

Now let us consider the function T^ , (z0 cosu), where (Ref. 3, 
22.3.15) 

T^j (») = cos [(2H-1) arc cos («)] (9) 

is an odd polyroiiiai of degree 2H-1 in x(Ref. 3, 22.3.6).  Thus 
^2H-1 ^*o cos u^ ^s an ^^ polynomial of degree 2H-1 in cos u and can 
therefore be expressed as 

T  (^ cw J} c Xc, C0s[l2X.i) u] 
2H-» *•! 

(10) 

A plot of (10) is given in figure 2 It is seen to possess a single 

2;tt5^- I. 

FIGURE 2. Chebyshev Function 
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large peak (for 2C > 1) at u = 0 of value ^2¥-l  ^o) an^ equal-ripple 
sidelobes of value *!• The parameter ^ controls the mainlobe/sidelobe 
ratio. For large H, (10) can be shown to approach ««(^V-»1-) (Ref. ^). 

If. A comparison of (5) and (10) reveals that we can force these two 
functions to be equal fcr all u if we please, by proper choice of 
weights {w^j . In so doing, we will realise the highly desirable be- 
havior depicted in figure 2, namely equi-ripple sidelobes and a sharp 
main lobe. In fact, it was proven by Dolph (Ref. 1) that for a 
specified mainlobe width (to the first null), the function in figure 2 
realizes the minimum sidelobe level possible, and vice versa; thus 
(10) represents the optimum pattern under this definition. 

Determination of Weights 

Setting (5) and (10) equal, we require 
M 

2^K CW[(2M)H] « TJ^.fc ^), «II u- 

In particular, in order to determine the H unknowns Jw^^, 
force equality at 

(ID 

let us 

(K) 

(G(u) and T2H ..(^ cos u) are already equal at u - Tr/2)    Then we hav^ 

which constitutes H linear equations in the H unknowns 

In order to solve* (13), we multiply both sides by €„cos[[2wi-i)3-^j 
and sura en n,  where 

e. = 

i,  n = 0 

1, n = 1,  2,  ..., H - l\  • 
(U) 

*This is an application of orthogonality over a discrete set of points; 
se^ for example, Ref.  5, ch. 6. 
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There results 

K.i n-.   L    i    l "^ (15) 

Now we employ the closed form expression 

^ ™M - JC^- (16) 
(where €^1 %) in (15), and obtain 

w.^^^^^^S))"^-^^,»-''2'-' "■        (17) 

This is identical to equation  (35) of Ref.  2,   except for a scale factor. 

Representation as FFT 

In Appendix A, it is shown (using (17)) that 

wt 

v.-R«KJ (16) 

where 

v   ^ 21H, ^p(-i2.kM/H); all  V,     (bFT) (19) 
R       v,.o 

and \\        /        \ 
?,. ^^^„-.^^(T^^FOTJ),"^,',.-^-!.  .20) 

But   1<»36   in (19) can be ccKputed via an H-pcir.t FFT of the  sequence 
{i^0 in  (CO).    And since  fofi is pericdi: of period H,   (1?) can 

SAMPLE REFERENCE PROGRAMS AND EXAMPLES 

It will be noticed fror.  (20) that computation of the H + 1 nur.bers 
cosfe-rr), 0s*1- H   >  suffices to determine all the necessary quantities 

8 
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-i»-' 

required for the evaluation of   [ai,   ,  except for the actual evaluation 
of T^-lO).    Furthemcre,  the H-pcint FFT in (19) needs storage only 
of the quarter-cosine table cos{27T n/H) - cos(? -^J2- ), Osn* |, for 
the FFTs we employ*  (Refs. 6, 7).    But these numbers are a subset of 
those generated above;  thus economy of evaluation is realized by saving 
the appropriate cosine values for the FFT evaluation.    This feature 
is utilized in the programs written. 

Two subroutines have been written for the evaluation of the 
Dolph-Chebyshev weights via (18)-(20).    In the first one, DOLPHS, the 
storage, FFT, and weight evaluation are in single precision.    In the 
second subroutine, DOLPHD,  the storage, FFT, and weight evaluation are 
in double precision.    These subroutines use the FFTs in Refs. 6 and 7 
respectively (without the quarter-cosine subroutine).1! In both subroutines, 
it was found necessary to evaluate T2H-l( * ) via double precision; for 
example, errors in the third decimal place occurred for H = 512 and -40 dB 
sidelobes when T2H-l(•) was attempted in single precision. 

A sample reference program for the single precision case is listed 
below: 

PARAMETER H=512 
DIMENSION X(H),Y(H),C(H) 
DB=40. 
CALL DaLPHS(H,DB,X,Y,C) 
PRINT 1, C 

1   F0RMAT(2X,5E26.8) 
END 

The variable DB is the desired sidelobe level relative to the peak 
of the mainlabe, and is in single precision.    The single precision 
weights  {wfc}^ in figure 1 are available in array 0 as indicated in 
figure 3;  that is, C(l) contains edge element weight w^, while C(H) 
contains the weight w]_. 

c(H-i> 

C(N) . 

,'■ 

c(0. 

C(H) 

.    cO) 
Jf  : —t* 

FIGURE 3.    Weight G »rrnspnndpnro t,o C Army 

*Thon*3 FFTn apply only to thn cane wh^rr H i.n n powpr of 
thn tf;»;Jini(iuo nf Ap|-t»ndix A in moro ^rmeml. 

hi'wovf'f, 

o 
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A sample reference program for the double precision case is listed 
below: 

PARAMETER H=512 
DOUBLE PRECISION X(H),Y(H),C(H) 
DB=40. 
CALL DOLPHD(H,DB,X,Y,C) 
PRINT 1, C 

1 FORMAT (2X,5D26.18) 
END 

The quantity dB is still in single precision, as above.    The double 
precision weights are available in array C in exactly the sane order 
indicated in figurt; 3. 

For the examples that we tried,   the character of the weights 
{vtfl was such that they are always positive, and they decay 
monotonically from the center, w:.th the exception of the very edge 
weight,  which can be relatively large in some cases of a narrow 
mainlobe..    The spectral response G(u) in (5) is very well approximated 
by cos^ÄV-B1') for large H (such as 512), as predicted by Ref. 4. 
The single precision weights agreed with the double precision weights 
to seven decimals in most cases.^ The accuracy of the double precision 
results were not checked.    The time of execution required for 
GALL DOLPHS and H = 512 was 0.43 seconds on the Univac 1108, Exec 8 
system,  whereas that for CALL DCLPHD was 0.52 seconds. 

The auxiliary arrays X and Y required in the main programs above 
are available for other purposes once the weights are evaluated and 
placed in array C;  thus the extra storage of 2H cells is a temporary 
requirement. 

Some sample  spectral responses are plotted in figures 4-9, 
normalized to 0 dB at the peak.    The  first,  in figure 4,  corresponds 
to equal weighting at all elements and is presented for comparison 
purposes.    Actually,  figure * corresponds tc a flat continuous 
weighting over an interval cf duration L seconds  (H = ^ ); howov'-r, 
for a large number H cf elements,   there is no  substantial diflVTvne. 
between figure 4 and the exact response fcr finite H.    The first null 
occurs at Lf = 1. 

10 
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In figure  5,   the spectral response for Dolph-Chebyshev weighting 
with a large nunber of elements*  (H »   1) is plotted for the case 
where Lf - ? = 1 corresponds to the point on the raainlobe where the 
eventual sidelobe level is first taken on.    The nainlobe width (to 
the first null) is virtully the same as that for figure 4; however, the 
peak sidelobe has been reduced from -13.3 dB to -21.3 dB. 

In figures 6-9, the spectral responses for Dolph-Chebyshev 
weighting are plotted for P = 1.5, 2.0, 2.5, anu 3.0 respectively. 
The quantity P is the value of Lf at which the eventual sidelobe 
level is first taken on.    The broadening of the mainlobe is accompanied 
by a significant decrease in sidelobe level. 

COMMENTS 

A quick and accurate technique for evaluating the Dolph-Chebyshev 
weights for a 2H-element array has been accomplished and employs a 
single H-point FFT.    Thus minimum storage and execution time have been 
realized; the additional temporary storage needed for the evaluation 
is available for use immediately after the weights are calculated. 

% Double precision evaluation of the Chebyshev polynomial is required; 
however further calculations can all be done in si.igle precision with 
exrtel]*»»^. results.   ~ " ~~ " "       "" 

The use of Dolph-Chebyshev weighting for spectral analysis via 
large-size FFTs should be tempered with the following caution:    since 
the spectral response does not decay with frequency (see figures 5-B), 
strong frequency components far removed from the frequency band of 
interest can severely bias the estimate.    This "distant" bias is greatly 
reduced when a window (such as Manning), which decays rapidly with 
frequency, is usedt* Cn the other hand,  the relatively larger adjacent 
sidelobes of p window with decaying response yield larger values of 
"local" bias if strong interferences are close to the frequency band 
of interest.    Which window is to be preferred in a particular application 
depends upon the  rat.> M* decay rf the true spectrum with frequency, ind 
l.hf i-.t.rervt.h and   loent.lon o{' ■.•Ivonft t'requeney compenents.     Since thu' 
InlVmntlon It' net. known n priori, but is in fact the goal of the analysis, 
concurrent spectral analysis with two types of windows,  e.g.  Harming 
and Dolph-Chebyshev, nay be suggested ir some applications. 

*The dependence of the spectral response on H is negligible for large 
H. 
**See, for example,  Ref. 8, esp. pp. 3 and 10-14. 

11 
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Fi^v»   4.   5^-tra)   Response "fer   Fi«^" TT^ W«^^ 
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Rgun 5*. Sftdn) t?f5po^»« -ftr Polp^CKebysW ^^^3 ?^ 1.0 
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Figure 6. ^t+n») ^>5^$e ftr t>olpi»-CW\>ijjW We^jlii^; P=).5 

1^ 
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R^urt.").    Sft£r*\ t?«5pe*we fcr Ib^-C^sW Wti^ti»^} ?-2.o 
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APPENDIX A. MANIPULATION OF (17) INTO FFT FORM 

Equation (17) can be expressed as 

Ww- "Re ^ n; «7(i?^)«xp(-i2^)) „,.1,2,...,«, ^j 

where 

r,-■^■■^.U "4?*)), »--''''■'H-'' (A.2) 

Is a real sequence. Defining 

2^=^ c«p(i-i:-S:))"-M,-,H.|> (A_3) 

(A-l) becomes 

W,.K.^Z-^p(-i^), m../2;..vH. 

Now let us define 
M-l 

n-o 
whereas frcn (A-5) ind (A-3), 

<-*      »  ^. sT € >rp(j 2-n{H+1-0H/H) 
(l«0 

»•0 

(A-^) 

'<H = ^^ev^(-i2^/H\«', k- (A.5) 

Then from (A-4) and (A-5), 

W^KeW,   l^2kiW. (A_6) 

Also,  from  (A-^) and  (A-3), 

v. = ** ^^^)^{-^^) 
x Re ^ ^ ^pli5r)^rl-i2^/H), '* 2,H5 H'      (A-7) 

19 
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Therefore 

V.'M'O.     '^M^H. (A-9) 
Expanding (A-6) and  (A-9) out in detail, there follows (for H even) 

w,--Beta)--Re K) %=Re(-<N) 

S ■ H^ * ' ^ 
I 

1 

J * 

Thus the real parts of the H-point FFT in (A-5) for Oi k S H - 1 
serve to determine all the weights  [w^l... 

33 
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APPENDIX B.    PROGRAMS 

The FFTs required in the follovdng two subroutines are these 
presented in Refs.  6 and 7.    The programs are written for H equal 
to a power of 2, but can be generalized via the technique of Appendix 
A. 

BROUTIMC   DOLPMStHiDBtXfY.C) 
USLE   PRECISION   H21. ZQ. A »Tt Cl .C2»T1 ,T1 

IHTE6ER  H     L PROSRAH   WRITTCH  FOR   Hr2* • INTEgep. 
OIHENSION   )C(1).Y(1)»C{1J 

Hililll 
ZO^IO.OO«*(.0SDO»AeS(DB)) 
ZO:LOe(ZD4$9RT(ZO'IO-l.DO)i 
zozcosmzo/HZi) 
AM. S7079C)26794g946l9DO/H 
IlsH/2-1 
I2iH/4tZ 
X( 1) = .SOO*T(IO} 

DO  1 Ksl'Il 
CisCOS (A *K) 
CtrSir4(A*K) 
IF(NOD(K •A-).NC.O)   GO   TO  2 
13SKA n 
C(X3)sCl 
Ctl2-i3)»CI  
Tl*TI20»Cl) 
l2rT(Z0»CZ) 

Y(K4l)=Tl.CZ 
XlH+l-K )=T2'C2 
Y(H^l-H)»n»Cl 
eisswn.SDO) 
I3-H/841 
CU):l. 
C(I3)=Cl 
C(I2-i)£0. 
T15T(Z0»C1) 
X(ll<»2)s.Tl.Cl 
Yl Il+2)sXai*Z) 
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K:1.44Z7*L06(H)+.5 
CAtt   MKLFFT(3r.YtC.Kf-l» 

I12H-3 
DO  3 K=1»I1'Z 
I2=»H*5-K)/2 
I5sCH+3»K)/l 
C(K):B*X(ZZ1 

C(M-1)=8»X(Z) 
C(M)Sft*Xll} 
RETURN 
FUNCTION  T|X) 
DOUOLC   PRCSZfflON  X 
IF(X.6T.1.00}   60   TO   1 
rrC05(H21*ACOS(X) ) 
RETURN 
T:(X*JfRTrx»X-l.00))»»I21 
Tr.5D0MT4l.D0/TJ 
RSTURN 
END 

SUBROUTINE  OOLpHD(H*PBtX>ttC) 
POUBLE  PRCCX^tON   HZ11 ZO» A »T »Cl» CZtTl t T2, X (1 ) t Y 11 ). C tl ; 
INTEOCR  H     a   PROGRAM   WRITTEN   FOR   Mr2**IHTE6ER 
121rK»Z-l 

10-LO.00»M.0500»ABS(08)) 
Z0=U00(ZO>SqRT(Z0*ZO-l.D0)) 
Z0;COSH(Z0/H21) 
A=1.S707963Z679<I-896619D0/H 
IITM/2-1 
IZSH/^Z 

22 
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Xll)r.SDO»T(ZO) 
Ytl)=0.00 
DO  1  KMtll 
Cl=CaS(A«K ) 
CZ=SINIA»K J 
iCIrtODtK»'») .NC.O)   (JO 10 Z 
13-K/fil 
Cll3»=Ci 
ClI2-I3)rC2 
Tl=T(lO-Cl) 
T2=_TtZ0»C2j 
XHÖlirfl-Cl 
YCK»l)rTl»Cl 
XlHil-K):T2»C2 
YlM«-l-k ) =T2»C1 
Cl;S9R1U500l 

Cti)=1.00 
C(I3)sCl 
C(I1-1ITO.DO 

T1^T(20«C1I 
)(ttl>2J«Tl«Cl 
Y(11*2):X(I1»2) 
K:l.<«(t27*L06(M) + .S 
CALL   PPNFFT(Xtt.Cfkt-l) 
A:1.|0/H 
lliH-J 
DO  I KsliIltZ 
12r(H*3-KJ/2 
I3S(H*34K)/2 
C(K)=A*X(I2i 
C(>K-1)-A»XJ12) 
CiH-lJ=A»X(2) 
C(H»-A»Xtl) 
RETURN 
FUNCTIOH T(X) 
DOÜPLG   pßCClSlOK   X 
IPU.&T.I.OO»   GO TO 1 
TrCOS(H2l*AC0S(XI) 
RETURN 
Tr ( XtSQRT ( X*X*1.00 ) ) • «lit 
Ts.500«(T*1.D0/T» 
flETURN 
END 
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